Search
j0ke.net Open Build Service
>
Projects
>
home:netmax
:
monitoring
>
openssl1
> 0002-rsa-rsa_eay.c-implement-variant-of-Smooth-CRT-RSA.patch
Sign Up
|
Log In
Username
Password
Cancel
Overview
Repositories
Revisions
Requests
Users
Advanced
Attributes
Meta
File 0002-rsa-rsa_eay.c-implement-variant-of-Smooth-CRT-RSA.patch of Package openssl1
From f9381fd323303316282331a8cced6e030e809794 Mon Sep 17 00:00:00 2001 From: Andy Polyakov <appro@openssl.org> Date: Mon, 13 Aug 2018 20:20:28 +0200 Subject: [PATCH 2/4] rsa/rsa_eay.c: implement variant of "Smooth CRT-RSA." In [most common] case of p and q being of same width, it's possible to replace CRT modulo operations with Montgomery reductions. And those are even fixed-length Montgomery reductions... (cherry picked from commit 41bfd5e7c8ac3a0874a94e4d15c006ad5eb48e59) Resolved conflicts: crypto/rsa/rsa_eay.c Reviewed-by: Paul Dale <paul.dale@oracle.com> (Merged from https://github.com/openssl/openssl/pull/6942) --- crypto/rsa/rsa_eay.c | 101 +++++++++++++++++++++++++++++++++++-------- 1 file changed, 83 insertions(+), 18 deletions(-) Index: openssl-1.0.1i/crypto/rsa/rsa_eay.c =================================================================== --- openssl-1.0.1i.orig/crypto/rsa/rsa_eay.c +++ openssl-1.0.1i/crypto/rsa/rsa_eay.c @@ -805,7 +805,7 @@ static int RSA_eay_mod_exp(BIGNUM *r0, c BIGNUM *r1,*m1,*vrfy; BIGNUM local_dmp1,local_dmq1,local_c,local_r1; BIGNUM *dmp1,*dmq1,*c,*pr1; - int ret=0; + int ret = 0, smooth = 0; BN_CTX_start(ctx); r1 = BN_CTX_get(ctx); @@ -841,6 +841,9 @@ static int RSA_eay_mod_exp(BIGNUM *r0, c goto err; if (!BN_MONT_CTX_set_locked(&rsa->_method_mod_q, CRYPTO_LOCK_RSA, q, ctx)) goto err; + + smooth = (rsa->meth->bn_mod_exp == BN_mod_exp_mont) + && (BN_num_bits(q) == BN_num_bits(p)); } } @@ -848,6 +851,46 @@ static int RSA_eay_mod_exp(BIGNUM *r0, c if (!BN_MONT_CTX_set_locked(&rsa->_method_mod_n, CRYPTO_LOCK_RSA, rsa->n, ctx)) goto err; + if (smooth) { + /* + * Conversion from Montgomery domain, a.k.a. Montgomery reduction, + * accepts values in [0-m*2^w) range. w is m's bit width rounded up + * to limb width. So that at the very least if |I| is fully reduced, + * i.e. less than p*q, we can count on from-to round to perform + * below modulo operations on |I|. Unlike BN_mod it's constant time. + */ + if (/* m1 = I moq q */ + !bn_from_mont_fixed_top(m1, I, rsa->_method_mod_q, ctx) + || !bn_to_mont_fixed_top(m1, m1, rsa->_method_mod_q, ctx) + /* m1 = m1^dmq1 mod q */ + || !BN_mod_exp_mont_consttime(m1, m1, rsa->dmq1, rsa->q, ctx, + rsa->_method_mod_q) + /* r1 = I mod p */ + || !bn_from_mont_fixed_top(r1, I, rsa->_method_mod_p, ctx) + || !bn_to_mont_fixed_top(r1, r1, rsa->_method_mod_p, ctx) + /* r1 = r1^dmp1 mod p */ + || !BN_mod_exp_mont_consttime(r1, r1, rsa->dmp1, rsa->p, ctx, + rsa->_method_mod_p) + /* r1 = (r1 - m1) mod p */ + /* + * bn_mod_sub_fixed_top is not regular modular subtraction, + * it can tolerate subtrahend to be larger than modulus, but + * not bit-wise wider. This makes up for uncommon q>p case, + * when |m1| can be larger than |rsa->p|. + */ + || !bn_mod_sub_fixed_top(r1, r1, m1, rsa->p) + + /* r0 = r0 * iqmp mod p */ + || !bn_to_mont_fixed_top(r1, r1, rsa->_method_mod_p, ctx) + || !bn_mul_mont_fixed_top(r1, r1, rsa->iqmp, rsa->_method_mod_p, + ctx) + || !bn_mul_fixed_top(r0, r1, rsa->q, ctx) + || !bn_mod_add_fixed_top(r0, r0, m1, rsa->n)) + goto err; + + goto tail; + } + /* compute I mod q */ if (!(rsa->flags & RSA_FLAG_NO_CONSTTIME)) { @@ -924,14 +967,29 @@ static int RSA_eay_mod_exp(BIGNUM *r0, c if (!BN_mul(r1,r0,rsa->q,ctx)) goto err; if (!BN_add(r0,r1,m1)) goto err; - if (rsa->e && rsa->n) - { - if (!rsa->meth->bn_mod_exp(vrfy,r0,rsa->e,rsa->n,ctx,rsa->_method_mod_n)) goto err; + +tail: + if (rsa->e && rsa->n) { + if (rsa->meth->bn_mod_exp == BN_mod_exp_mont) { + if (!BN_mod_exp_mont(vrfy, r0, rsa->e, rsa->n, ctx, + rsa->_method_mod_n)) + goto err; + } else { + bn_correct_top(r0); + if (!rsa->meth->bn_mod_exp(vrfy, r0, rsa->e, rsa->n, ctx, + rsa->_method_mod_n)) + goto err; + } /* If 'I' was greater than (or equal to) rsa->n, the operation * will be equivalent to using 'I mod n'. However, the result of * the verify will *always* be less than 'n' so we don't check * for absolute equality, just congruency. */ if (!BN_sub(vrfy, vrfy, I)) goto err; + if (BN_is_zero(vrfy)) { + bn_correct_top(r0); + ret = 1; + goto err; /* not actually error */ + } if (!BN_mod(vrfy, vrfy, rsa->n, ctx)) goto err; if (BN_is_negative(vrfy)) if (!BN_add(vrfy, vrfy, rsa->n)) goto err; @@ -955,6 +1013,15 @@ static int RSA_eay_mod_exp(BIGNUM *r0, c rsa->_method_mod_n)) goto err; } } + /* + * It's unfortunate that we have to bn_correct_top(r0). What hopefully + * saves the day is that correction is highly unlike, and private key + * operations are customarily performed on blinded message. Which means + * that attacker won't observe correlation with chosen plaintext. + * Secondly, remaining code would still handle it in same computational + * time and even conceal memory access pattern around corrected top. + */ + bn_correct_top(r0); ret=1; err: BN_CTX_end(ctx);